33 include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel process- 5 ing, or virtual machine processing can also be constructed to implement the methods described herein. In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environ- 10 ments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement 15 the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized. In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In 25 these instances, the systems and methods of this disclosure can be implemented as program embedded on personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, sys- 30 tem component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system. Although the present disclosure describes components and functions implemented in the aspects, embodiments, 35 and/or configurations with reference to particular standards and protocols, the aspects, embodiments, and/or configurations are not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present 40 disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the 45 same functions are considered equivalents included in the present disclosure. The present disclosure, in various aspects, embodiments, and/or configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted 50 and described herein, including various aspects, embodiments, configurations embodiments, subcombinations, and/ or subsets thereof. Those of skill in the art will understand how to make and use the disclosed aspects, embodiments, and/or configurations after understanding the present disclo- 55 image is a non-clipped portion and the second portion of the sure. The present disclosure, in various aspects, embodiments, and/or configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and/or configurations hereof, including in the absence of such items 60 as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation. The foregoing discussion has been presented for purposes of illustration and description. The foregoing is not intended 65 to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various 34 features of the disclosure are grouped together in one or more aspects, embodiments, and/or configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and/or configurations of the disclosure may be combined in alternate aspects, embodiments, and/or configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claims require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspect, embodiment, and/or configuration. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure. Moreover, though the description has included description of one or more aspects, embodiments, and/or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and/or configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter. What is claimed is: 1. A method, comprising: providing a device having at least first and second displaying, by the device, an image in a first display of the first screen, wherein the image is displayed entirely within a display area of the first display; determining that the image displayed in the first display of the first screen requires clipping as a result of receiving a user request to move or resize the image; clipping the image displayed in the first display of the first screen such that a first portion of the image is displayed in the first display of the first screen and a second portion of the image, which is being clipped, is prevented from being displayed in the first display of the first screen and a first display of the second screen; and displaying, by the device, in the first display of the second screen, and in place of the clipped portion, a translucent representation of the clipped portion of the image, the representation being a size and shape of the clipped - 2. The method of claim 1, wherein the first portion of the image is a clipped portion. - 3. The method of claim 1, wherein the determining step further comprises: - determining if the image displayed in the first display of the first screen exceeds a displayable area of the first display of the first screen. - 4. The method of claim 3, wherein the determining step is performed in response to detecting a change in the image displayed in the first display of the first screen. - 5. The method of claim 4, wherein the change that is detected at least one of a movement of the image and a resizing of the image.